Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 30(8): 1520-35, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21399614

RESUMO

Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP-SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non-specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.


Assuntos
Centrossomo/metabolismo , Proteínas/metabolismo , Proteômica , Centríolos/química , Centríolos/metabolismo , Centrossomo/química , Cílios/metabolismo , Células HeLa , Humanos , Espectrometria de Massas , Microscopia de Fluorescência , Organelas , Proteínas/química
2.
J Cell Sci ; 123(Pt 13): 2163-9, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20516151

RESUMO

Centrioles are the main constituents of the mammalian centrosome and act as basal bodies for ciliogenesis. Centrosomes organize the cytoplasmic microtubule network during interphase and the mitotic spindle during mitosis, and aberrations in centrosome number have been implicated in chromosomal instability and tumor formation. The centriolar protein Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis and is crucial for maintaining constant centriole number, but the mechanisms regulating its activity and expression are only beginning to emerge. Here, we show that human Plk4 is subject to betaTrCP-dependent proteasomal degradation, indicating that this pathway is conserved from Drosophila to human. Unexpectedly, we found that stable overexpression of kinase-dead Plk4 leads to centriole overduplication. This phenotype depends on the presence of endogenous wild-type Plk4. Our data indicate that centriole overduplication results from disruption of Plk4 trans-autophosphorylation by kinase-dead Plk4, which then shields endogenous Plk4 from recognition by betaTrCP. We conclude that active Plk4 promotes its own degradation by catalyzing betaTrCP binding through trans-autophosphorylation (phosphorylation by the other kinase in the dimer) within homodimers.


Assuntos
Centríolos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centrossomo/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Contendo Repetições de beta-Transducina/genética
3.
Curr Biol ; 19(12): 1005-11, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19481458

RESUMO

Centrioles function as the major components of centrosomes, which organize microtubule (MT) arrays in proliferating cells, and as basal bodies for primary cilia formation in quiescent cells. Centrioles and basal bodies are structurally similar, barrel-shaped organelles composed of MTs. In proliferating cells, two new centrioles, termed procentrioles, form during the S phase of the cell cycle in close proximity to the proximal ends of the two preexisting parental centrioles, often at a near-orthogonal angle. Considerable progress has been made toward understanding the biogenesis of centrioles, but the mechanisms that determine their lengths remain unknown. Here we show that overexpression of the centriolar protein CPAP in human cells enhances the accumulation of centriolar tubulin, leading to centrioles of strikingly increased length. Consistent with earlier work, we also find that elongated MT structures can be induced by depletion of the distal end-capping protein CP110 from centrioles. Importantly, though, these structures differ from genuine primary cilia. We thus propose that CPAP and CP110 play antagonistic roles in determining the extent of tubulin addition during centriole elongation, thereby controlling the length of newly formed centrioles.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Centríolos/metabolismo , Centríolos/ultraestrutura , Humanos , Proteínas Associadas aos Microtúbulos/genética , Fosfoproteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tubulina (Proteína)/metabolismo
4.
Dev Cell ; 13(2): 190-202, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17681131

RESUMO

We show that overexpression of Polo-like kinase 4 (Plk4) in human cells induces centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole. This provided an opportunity for dissecting centriole assembly and characterizing assembly intermediates. Critical components were identified and ordered into an assembly pathway through siRNA and localized through immunoelectron microscopy. Plk4, hSas-6, CPAP, Cep135, gamma-tubulin, and CP110 were required at different stages of procentriole formation and in association with different centriolar structures. Remarkably, hSas-6 associated only transiently with nascent procentrioles, whereas Cep135 and CPAP formed a core structure within the proximal lumen of both parental and nascent centrioles. Finally, CP110 was recruited early and then associated with the growing distal tips, indicating that centrioles elongate through insertion of alpha-/beta-tubulin underneath a CP110 cap. Collectively, these data afford a comprehensive view of the assembly pathway underlying centriole biogenesis in human cells.


Assuntos
Centríolos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centríolos/ultraestrutura , Humanos , Microscopia Imunoeletrônica , Modelos Biológicos
5.
J Cell Commun Signal ; 1(1): 33-43, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18481208

RESUMO

BACKGROUND: Antibodies produced by B-lymphocytes play a key role in the host defense against infection. The development, survival, and activation of B cell is regulated by multiple receptors including the B cell antigen receptor (BCR), which detects the presence of pathogens, CD40, which binds co-stimulatory molecules on activated T cells, and chemokines such as SDF-1 (CXCL12) that play key roles in B cell development and trafficking. Signaling by many receptors results in the generation of reactive oxygen species (ROS) that function as second messengers by regulating the activity of redox-sensitive kinases and phosphatases. We investigated the role of ROS in signaling by the BCR, CD40, and CXCR4, the receptor for SDF-1. We focused on activation of ERK, JNK, p38, and Akt, kinases that regulate multiple processes including cell survival, proliferation, and migration. RESULTS: Using the anti-oxidants N-acetyl L-cysteine (NAC) and ebselen to deplete intracellular ROS, we identified a differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by these receptors. We found that CD40 activated JNK, p38, and Akt via redox-dependent pathways that were sensitive to ROS depletion by NAC and ebselen. In contrast, BCR-induced activation of ERK, JNK, p38, and Akt was not affected by ROS depletion. We also found that CXCR4-induced Akt activation was ROS-dependent even though activation of the ERK, JNK, and p38 MAP kinases by CXCR4 occurred via ROS-independent pathways. CONCLUSION: The differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by the BCR, CD40, and CXCR4 likely reflects the multiplicity of upstream activators for each of these kinases, only some of which may be regulated in a redox-dependent manner. These findings support the idea that ROS are important second messengers in B cells and suggest that oxidants or anti-oxidants could be used to modulate B cell activation.

6.
Eur J Immunol ; 36(8): 2235-49, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16821235

RESUMO

The localization of B cells to lymphoid organs where they can become activated and differentiate into antibody-secreting plasma cells is controlled by multiple chemoattractants that promote cell migration and integrin-mediated adhesion. CXCL13 and sphingosine 1-phosphate (S1P) are two important chemoattractants that control the trafficking of B cells. CXCL13 directs B lymphocytes to lymphoid follicles where they receive survival signals and, if activated, undergo a germinal center response. In contrast, S1P allows B cells and plasma cells to exit lymphoid organs and re-enter the circulation. The Rap1 GTPase is a key regulator of cell adhesion and cell migration in a number of systems. We now show that Rap activation is required for CXCL13 and S1P to induce B cell migration as well as adhesion to ICAM-1 and VCAM-1. We also show that Pyk2, a tyrosine kinase involved in cytoskeleton rearrangements and B cell migration, is a downstream target of both CXCL13 and S1P signaling and that Rap activation is important for CXCL13 and S1P to stimulate tyrosine phosphorylation of Pyk2, a modification that increases Pyk2 kinase activity. This suggests that the ability of CXCL13 and S1P to direct the trafficking and localization of B cells in vivo may be dependent on Rap activation.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Quimiocinas CXC/farmacologia , Quinase 2 de Adesão Focal/metabolismo , Lisofosfolipídeos/farmacologia , Fosfotirosina/metabolismo , Esfingosina/análogos & derivados , Proteínas rap de Ligação ao GTP/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL13 , Quimiotaxia/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...